If it's not what You are looking for type in the equation solver your own equation and let us solve it.
(t)=-16t^2+55t+190
We move all terms to the left:
(t)-(-16t^2+55t+190)=0
We get rid of parentheses
16t^2-55t+t-190=0
We add all the numbers together, and all the variables
16t^2-54t-190=0
a = 16; b = -54; c = -190;
Δ = b2-4ac
Δ = -542-4·16·(-190)
Δ = 15076
The delta value is higher than zero, so the equation has two solutions
We use following formulas to calculate our solutions:$t_{1}=\frac{-b-\sqrt{\Delta}}{2a}$$t_{2}=\frac{-b+\sqrt{\Delta}}{2a}$
The end solution:
$\sqrt{\Delta}=\sqrt{15076}=\sqrt{4*3769}=\sqrt{4}*\sqrt{3769}=2\sqrt{3769}$$t_{1}=\frac{-b-\sqrt{\Delta}}{2a}=\frac{-(-54)-2\sqrt{3769}}{2*16}=\frac{54-2\sqrt{3769}}{32} $$t_{2}=\frac{-b+\sqrt{\Delta}}{2a}=\frac{-(-54)+2\sqrt{3769}}{2*16}=\frac{54+2\sqrt{3769}}{32} $
| 3/8x+9=21 | | -21=4x+36-7x | | 15=u+7 | | 4b-2=3b-5 | | -8n+12=68 | | 4x=4=12 | | 2x=-8(12+x) | | 3(q−7)=273 | | 18=4d-6+2d | | 45=4d-4+3d | | 36x-12x+x=0 | | (0.2x+0.6)-(8x-12)=0.9 | | 96+25c+35c=576 | | 5k+7=14+6k | | d/5-8=-12 | | 62=-7(k+9)-12(2+9k) | | 3r+3-6r=-15 | | -2x-4(4x+5)+5=-33 | | -6(-7x+8)-5x=-344 | | 4^x+4^2-x=17 | | f/9+3=13 | | -12=-3a/4 | | y=-160-9(13) | | -45=5n | | -7(3m-1)-2=-163 | | -9=-3x/4 | | b/5+14=10 | | 3x=4x+30 | | -3z/5=18 | | 0=-8(11x+9)-8(6x-9) | | 5x/6=-5 | | 2(x+3)=2x-10-4x |